
HOVER	ZOOM:	MOUSE	EVENTS	&	EXTRACTING	PART	OF	AN	IMAGE	IN	JAVAFX	

INTRODUCTION	
Previous	tutorials	have	focussed	on	using	keyboard	events.	Quite	
often	we	need	to	make	use	of	the	mouse	in	an	application.	This	
simple	application	will	make	use	of	a	mouse	over	event	to	trigger	a	
method	that	extracts	part	of	an	image.		

Extracting	parts	of	an	image	are	useful	in	applications	where	you	
don’t	want	delay	in	displaying	images,	for	example	extracting	
frames	from	a	spritesheet,	or	a	web	app	where	you	don’t	want	the	
user	to	wait	for	a	new	image	to	be	retrieved	from	the	server	every	
time	they	rollover	an	on‐screen	object..		

Example	spritesheet:	

	

	

GETTING	STARTED	
Create	a	new	JavaFX	project.	Title	the	stage	“Zoomer”.	Make	sure	the	scene	has	a	size	of	350x	500.	Use	a	HBox	
as	the	root	layout.	Create	two	images	using	the	Image	class,	and	two	viewports	using	ImageView.	The	first	
will	be	for	the	original	image,	and	the	second	for	the	target,	zoomed	in	image.	Copy	the	graphic	turntable.jpg	
into	the	project	folder	and	assign	it	to	the	first	ImageView.	You	should	end	up	with	something	like	the	window	
below.	My	basic	class	is	overleaf.	

package zoomer;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class Zoomer extends Application {

 @Override
 public void start(Stage primaryStage) {
 Image imgOriginal = new Image(getClass().getResourceAsStream("turntable.jpg"));
 ImageView ivOriginal = new ImageView(imgOriginal);
 final ImageView ivTarget = new ImageView();

 VBox root = new VBox();

 root.getChildren().add(ivOriginal);
 root.getChildren().add(ivTarget);

 Scene scene = new Scene(root, 350, 500, Color.CORNFLOWERBLUE);

 primaryStage.setTitle("Zoomer");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }

}

ADJUSTING	AN	IMAGEVIEW	
The	first	thing	that	would	be	useful	to	us	here	is	to	be	able	to	see	the	whole	image.		

We	can	configure	an	ImageView	via	various	methods.	Try	the	following,	saving	and	re‐running	your	project	
each	time	to	see	what	happens.	Add	the	code	after	you	have	initialised	your	ImageView	with	the	Image	of	the	
turntable.	

	

ADDING	A	MOUSE	LISTENER	
In	order	to	bring	up	the	zoomed	in	image	for	the	current	region	of	the	image,	we	need	to	add	a	mouse	listener.	
This	is	similar	to	the	process	of	adding	a	key	listener.	We	will	create	an	anonymous	inner	class	to	handle	the	
event.	I	have	placed	this	below	where	I	show	my	stage.	

Note:	if	you	are	using	Java	8,	you	will	be	prompted	to	use	a	Lambda	expression.	The	use	of	an	anonymous	
inner	class	to	handle	events	was	to	streamline	code.	This	was	still	considered	too	bulky,	so	Java	8	now	offers	
lambda	expressions	to	simplify	the	code	further.	

	

CREATING	A	VIEWPORT	INTO	AN	IMAGE	
A	viewport	into	an	image	is	akin	to	a	window.	It	lets	us	look	at	a	specified	part	of	the	image.	To	do	this	I	draw	a	
rectangle	at	a	specified	point	on	the	image,	then	add	this	to	the	root	node	of	my	scene	graph.	In	this	case,	the	
specified	point	is	the	mouse	X	and	Y	on	the	image.	That	makes	the	handle	for	my	mouse	listener	now	look	like:	

	

The	getX	and	getY	return	a	double,	so	they	need	to	be	typecast	into	an	integer.	I	have	also	multiplied	them	by	
ten,	as	the	image	has	been	shrunk	by	a	factor	of	ten	to	fit	into	the	thumbnail.	Without	the	multiplication,	you	
would	only	see	a	very	small	segment	of	the	image	in	the	zoom	panel.	

This	is	a	simple	way	of	looking	at	a	segment	of	an	image.	The	problem	with	this	method	is	that	it	will	load	the	
entire	image	into	memory	and	only	show	a	part	of	it.	This	is	a	very	expensive	operation,	particularly	when	
dealing	with	lots	of	images.	

EXTRACTING	PARTS	OF	AN	IMAGE	
An	alternative	method	is	to	extract	only	the	parts	of	the	image	that	we	want	to	use.	This	can	be	done	by	using	a	
PixelReader	to	read	the	pixels	that	we	want	and	extracts	parts	into	a	WritableImage.	This	can	then	be	
placed	into	the	target	ImageView.	

My	new	handler	looks	like:	

	

IMPROVEMENTS	
Using	a	PixelReader	was	primarily	driven	by	a	concern	for	memory.	Replace	the	original	image	with	a	
thumbnail.	

You	may	have	noticed	that	when	the	mouse	goes	close	to	the	left	edge,	you	do	not	see	the	left	edge	of	the	
zoomed	in	image.	Experiment	with	subtracting	150	from	x	(the	midpoint	of	the	thumbnail)	and	similar	from	y.	
Check	and	adjust	x	and	y	so	if	they	go	below	a	particular	they	are	always	set	to	0.	

Add	a	similar	adjustment	to	the	right	edge.	

