
THE	JAVAFX	CANVAS	–	PART	I:		USING	IMAGES	
This	tutorial	will	create	the	application	5.	The	aim	is	to	use	images	and	paint	them	on	to	the	canvas.	We	will	also	
look	at	how	to	generate	a	random	number	and	practise	collision	detection	once	again.	If	you	haven’t	completed	
the	basic	creating	a	game	tutorials	(part	1	here),	then	go	back	and	do	so.	

	

STARTING	OFF:	CREATE	THE	BASIC	APPLICATION	
Create	a	basic	JavaFX	application,	call	it	CanvasPractice.	Set	the	window	size	to	be	800x600	as	a	minimum.	
Title	it	‘Blobs’.	Use	a	Group	as	the	root	layout	and	add	a	Canvas	to	it.	

I	achieved	the	black	background	like	this:	

	

This	saves	having	to	draw	a	rectangle	on	the	canvas	and	leaving	transparent	patches	when	using	the	
clearRect()	method.	You	may	notice	that	I	have	created	two	global	variables	for	height	and	width	instead	of	
hard	coding	the	values	in.	This	is	because	I	want	to	avoid	magic	numbers	appearing	throughout	my	code.	We	
will	need	to	use	the	window	height	and	width	in	several	places	in	this	application	

THE	BLOB	CLASS	
Add	a	new	class	to	your	project	and	call	it	Blob.	

Use	the	techniques	you	have	learnt	before	to	create	global	variables	as	shown	below.	These	have	been	declared	
as	private	so	they	are	hidden	inside	any	Blob	object.	

	

Following	from	this	create	public	methods	called	getX(),	getY()	and	getImage()	that	return	x,	y,	and	img.	We	
will	also	need	to	create	methods	that	return	the	height	and	width	of	the	image.	This	can	be	done	using	the	
getWidth()	and	getHeight()	methods	that	belong	to	Image.	

	



Now	it	is	time	to	develop	the	constructor	for	a	Blob.	This	will	need	to	know	the	file	path	for	the	blob	image	
along	with	the	height	and	width	of	the	application	window.	In	order	to	vary	the	Blobs,	we	can	use	a	random	
number	for	the	speed	(dx,	dy)	and	the	starting	x	and	y	co‐ordinates.	

The	nextInt()	method	of	the	Random	class	will	generate	a	number	within	the	specified	range.		nextInt(10)	
will	generate	a	number	from	0‐9.	As	we	need	to	specify	a	speed	in	both	directions,	we	add	1	so	that	there	is	a	
minimum	velocity	of	1.	Remember	that	x	and	y	start	from	the	top	left	corner.	For	the	Blob’s	we	need	to	make	
sure	that	it	starts	on	screen	so	we	subtract	the	height	and	width	of	the	image	from	the	height	and	width	of	the	
image	to	set	its	initial	x	and	y.	

	

You	may	have	realised	that	there	is	nothing	here	that	stops	two	blobs	being	initialised	on	top	of	each	other.	You	
can	develop	this	further	by	adding	a	place()	method.	This	could	then	be	called	repeatedly	from	the	main	
method	until	the	two	Blobs	are	not	overlapping.	

CREATING	AND	PAINTING	BLOBS	
In	the	CanvasPractice	class	I	have	added	two	global	Blobs.	

	

After	we	show	the	primaryStage,	we	can	start	to	manipulate	the	window.	We	need	to	instantiate	blob1	and	
blob2,	initialising	them	using	the	InputStream corresponding	to	the	image	file,	width	and	height	of	the	
window.	We	also	need	to	get	the	GraphicsContext	so	we	can	draw	to	the	canvas.	As	the	canvas	will	be	
updated	periodically,	we	can	use	an	AnimationTimer.	Although	it	is	not	really	necessary	in	this	simple	
application,	I	have	created	a	paint()	method	that	handles	the	updating	of	the	canvas.	This	method	needs	to	
receive	the	GraphicsContext.	

	

	



This	is	my	paint	method:	

	

MOVING	BLOBS	
Remember	that	the	x	and	y	of	an	object	are	measured	from	the	top	left	corner.	The	diagram	below	illustrates	
what	happens	when	an	object	is	moving	around	the	window;	we	need	to	make	sure	that	the	point	marked			
does	not	go	off	screen.	This	means	when	moving	across	a	layout	we	need	to	pay	attention	to	the	right‐hand	and	
bottom‐edges.		

	

	

	

	

	

	

	

	

	

Remember	we	are	using	dx	to	set	a	new	value	for	x.	If	the	right	edge	of	the	object	touches	the	rightmost	
extreme	of	our	movement	boundary	(in	this	case	the	right	edge	of	the	window)	then	we	need	to	reverse	the	
sign	of	dx.	dy	is	manipulated	in	a	similar	manner	using	the	bottom	edges	of	the	object	and	window.	This	means	
that	my	method	for	controlling	the	x	movement	looks	somewhat	like:	

IF objectX+objectWidth > windowWidth AND dx>0 THEN 
 dx = - dx 
ELSE IF object < 0 THEN 
 dx = -dx 
END IF 
x = x+dx 

Here	is	my	setX()	method:	

	

Application	Window	

Application	x=o,	y=0	
				x=Object	
x	+	Object	
width	

						y	=	
Object	y	+	
Object	
height	

Object	

Object	x,	y	

Object	height

Object	width	

Window	width	

Window	height



I	have	created	a	similar	private	method	for	setY.	The	final	touch	is	to	create	a	public	move()	method	that	itself	
calls	setX()	and	setY().	This	can	be	called	for	each	blob	from	the	AnimationTimer	in	the	CanvasPractice	
class.	

	

Running	the	application	now	should	allow	you	to	see	bouncing	blobs	on	screen.	

COLLISION	DETECTION:	BOUNCING	BLOBS	OFF	EACH	OTHER	
The	collision	detection	here	works	in	a	similar	manner	to	the	earlier	tutorial.	The	major	different	is	that	we	are	
working	here	with	an	Image	and	not	an	ImageView.	

In	order	to	make	the	collision	detection	work	via	the	intersects()	method,	we	need	to	create	a	Rectangle	
object	that	represents	the	current	bounds	of	a	blob.	We	can	then	see	if	this	rectangle	as	an	intersection	with	a	
rectangle	that	represents	the	bounds	of	the	other	blob.	If	they	have	collided	then	we	need	to	negate	dx	and	dy	
for	each	object	to	reverse	the	trajectory.	

A	Rectangle	is	created	by	specifying	the	z,	y	width	and	height	during	initialisation.	To	keep	my	animation	
timer	tidy	I	have	created	a	collisionDetect()	method.	A	public	crash()	method	in	my	blob	class	reverses	the	sign	
of	dx	and	dy.	

	

The	collision	detection	is	not	particularly	great	on	the	corners	due	to	the	difference	between	a	rectangle	and	
the	circular	shape	of	the	Blob.	You	can	experiment	with	using	Shape	to	create	better	quality	collision	detection.	

Finally,	these	last	two	tutorials	have	made	use	of	the	canvas	instead	of	manipulating	a	Layout.	This	is	
particularly	relevant	if	you	want	to	improve	the	performance	of	your	game.	A	grid	based	game	could	make	use	
of	the	layouts.	A	game	that	makes	use	of	a	great	deal	of	animation	would	benefit	from	performance	increases	
associated	with	using	the	canvas.	Finally,	when	developing	for	Android	you	would	benefit	from	making	use	of	
the	canvas	or	SurfaceView;	both	will	add	greater	capability,	flexibility	and	performance	benefits.	


