
THE	JAVAFX	CANVAS	–	PART	I:	DRAWING	
This	tutorial	will	focus	on	using	the	canvas	for	drawing	on	screen.	To	complete	it	make	sure	that	you	know	how	
to	create	a	basic	JavaFX	window	as	detailed	in	the	first	JavaFX	tutorial	on	yatishparmar.com:	Creating	a	JavaFX	
window.	

The	canvas	provides	a	blank	surface	that	you	can	customise.	Because	it	is	a	subclass	of	node	you	can	use	it	in	
the	JavaFX	graph.	This	means	that	you	can	add	it	to	Group	or	any	other	layout.	To	use	a	Canvas	you	must	first	
create	a	Canvas	object,	get	its	GraphicsContext	and	then	calling	various	different	draw	operations.		

CREATING	A	BASIC	DRAWING	
Create	a	new	Java	project,	add	the	necessary	imports	and	create	a	basic	JavaFX	window.	Use	a	Group	as	the	
root.		Create	a	canvas	and	add	this	to	your	root	Group.	Here	is	the	basic	code	for	my	Canvas	tutorial.	

	

To	draw	on	the	Canvas	I	need	to	retrieve	its	GraphicsContext.	I	can	then	use	this	to	draw	shapes	and	write	text,	
add	effects	to	these,	or	paint	images.	I	do	that	by	adding		

	

You	will	have	to	import	javafx.scene.canvas.GraphicsContext	to	do	this.	

	 	



DRAWING	ON	THE	CANVAS	
	

In	order	to	draw	on	the	canvas	you	will	have	to:	

1. Set	a	fill	colour	(if	you	want	a	solid	shape	
2. Set	a	line	colour	(if	an	outline	is	needed)	
3. Draw	your	shapes	

Here	is	an	example	of	drawing	a	red	rectangle	that	covers	the	whole	window	specified	above:	

	

If	I	wanted	to	clear	the	whole	window	I	would	need	to:	

	

In	comparison	this	would	clear	a	rectangle	100	pixels	by	50	pixels	in	the	middle	of	the	screen:	

	

You	can	also	try	the	following	code	to	see	what	happens:	

	

It	is	worth	experimenting	with	some	of	the	different	drawing	properties	such	as	fillText	and strokeText	
to	see	what	happens.	

This	example	will	draw	a	rectangle	that	is	filled	with	a	gradient:	

	

	 	



JAVAFX	ANIMATIONS	
JavaFX	makes	it	easy	to	animate	objects	in	a	root	layout.	The	example	below:		

1. Draws	an	orange	square.	
2. Instantiates	an	object	called	translate	from	the	TranslateTransition	class.	This	moves	the	square	across	

the	layout	within	a	specified	time.	
3. Sets	the	x	and	y	co‐ordinates	that	the	square	will	move	to	using	the	translate	object.	
4. Creates	a	transition	object	which	will	apply	the	specified	transition	to	the	specified	objects.	
5. The	transition	is	set	to	run	indefinitely,	returning	to	the	start	position.	
6. Finally	the	transition	is	played.	

	

A	ParallelTransition	implies	that	I	can	have	multiple	transitions	applied	to	an	object	at	any	one	point	in	
time.	

The	transition	below	would	make	my	square	rotate.	Notice	that	I	have	added	it	to	the	initialisation	of	transition	
so	that	it	now	applies	translate	and	rotate.	

	

Here	are	two	more	useful	transitions	you	can	experiment	with:	

	

	


