THE JAVAFX CANVAS — PART I: DRAWING

This tutorial will focus on using the canvas for drawing on screen. To complete it make sure that you know how
to create a basic JavaFX window as detailed in the first JavaFX tutorial on yatishparmar.com: Creating a JavaFX
window.

The canvas provides a blank surface that you can customise. Because it is a subclass of node you can use it in
the JavaFX graph. This means that you can add it to Group or any other layout. To use a Canvas you must first
create a Canvas object, get its GraphicsContext and then calling various different draw operations.

CREATING A BASIC DRAWING
Create a new Java project, add the necessary imports and create a basic JavaFX window. Use a Group as the
root. Create a canvas and add this to your root Group. Here is the basic code for my Canvas tutorial.

package canvastutorial;

import javafx.application.Application;
import javafx.scene.Group:

import javafx.scene.Scene;

import javafx.scene.canvas.Canvas;
import javafx.stage.Stage:;

W o - 3 i o= W N

public class CanvasTutorial extends Application {

-
(=

public static void main(String[] args) {
launch(args):;

el
W N
—
-

15

16 @Override

@ = public wvoid start (Stage primaryStage) throws Exception {
18 Group g = new Group():

19 Scene scene = new Scene(qg):

20 Canvas canvas = new Canvas(300,300):;
21 g.getChildren () .add (canvas) ;

22

23 primaryStage.setTitle("Canvas test");
24 primaryStage.setScene (scene):;

25 primaryStage.show ()

26 - }

27

28 }

To draw on the Canvas I need to retrieve its GraphicsContext. I can then use this to draw shapes and write text,
add effects to these, or paint images. I do that by adding

GraphicsContext gc = canvas.getGraphicsContext2D():

You will have to import Javafx.scene.canvas.GraphicsContext to do this.

DRAWING ON THE CANVAS

In order to draw on the canvas you will have to:

1. Setafill colour (if you want a solid shape
2. Setaline colour (if an outline is needed)
3. Draw your shapes

Here is an example of drawing a red rectangle that covers the whole window specified above:

gc.setFill (Color.RED);
gc.fillRect (0, O, 300, 300):;

If wanted to clear the whole window I would need to:

gc.clearRect (0, 0, 300, 300):

In comparison this would clear a rectangle 100 pixels by 50 pixels in the middle of the screen:

gc.clearRect (0, 0, 300, 300):

You can also try the following code to see what happens:

gc.setFill (Color.CRIMSON) ;

gc.setStroke (Color.BLACK) ;

gc.setLineWidth(5):

gc.strokelLine (50, 20, 20, 50):

gc.strokeArc (60, 160, 30, 30, 45, 240, ArcType.CHCRD):;
gc.strokeArc (110, 160, 30, 30, 45, 240, ArcType.OPEN):

It is worth experimenting with some of the different drawing properties such as fil I Text and strokeText
to see what happens.

This example will draw a rectangle that is filled with a gradient:

new Stop (0, Color.COR

new Stop(l, Color.LIGHTBLUE

gc.fillRect (0, 0, 300, 300);

JAVAFX ANIMATIONS
JavaFX makes it easy to animate objects in a root layout. The example below:

1. Draws an orange square.

Instantiates an object called translate from the TranslateTransition class. This moves the square across
the layout within a specified time.

Sets the x and y co-ordinates that the square will move to using the translate object.

Creates a transition object which will apply the specified transition to the specified objects.

The transition is set to run indefinitely, returning to the start position.

Finally the transition is played.

N

o s W

Rectangle r = new Rectangle(0,0,30, 30):

AT A AT

g.getChildren() .add(r) ;

TranslateTransition translate =

new TranslateTransition(Duration.millis(750)):
translate.setToX(270):
translate.setToY (100):

ParallelTransition transition = new ParallelTransition(rl
translate);

transition.setAutoReverse (true):;

transition.play():

AParallelTransition implies that I can have multiple transitions applied to an object at any one point in
time.

The transition below would make my square rotate. Notice that I have added it to the initialisation of transition
so that it now applies translate and rotate.

RotateTransition rotate = new RotateTransition(Duration.millis(750)):
rotate.setToAngle (360) 7

ParallelTransition transition = new ParallelTIransition(r,
translate, rotate):;

Here are two more useful transitions you can experiment with:

FillTransition fill = new FillTransition(Duration.millis(750)):

ScaleTransition scale = new ScaleTransition(Duration.millis(750)):
scale.setToX(0.1);
scale.setToY (0.1):

