
CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	

PART	FOUR	–	COLLISION	DETECTION	
The	final	part	of	this	set	of	tutorials	concerns	collision	detection.	

Consider	two	sprites,	A	and	B	moving	in	the	directions	indicated	by	the	arrows.		

	

	

	
	 	 	 	 	 A	 	 	 	 	 B	
	
We	can	know	a	collision	has	occurred	when	the	polygons	representing	the	two	intersect	as	demonstrated	
below.	
	
	
	
	
	
	
	
	
	
	
We	could	calculate	this	manually	by	comparing	the	x	and	y	co‐ordinates	of	each	vertice	on	each	polygon.	
Fortunately,	a	readily	available	method	has	been	provided	in	JavaFX.	

In	order	to	test	if	I	have	been	able	to	hit	the	baddie	I	will	have	to	loop	through	the	ArrayList,	get	a	
polygon	for	each	missile	and	check	it	for	intersections	with	the	polygon	that	represents	the	baddie.	If	I	
have	displayed	that	level	of	skill	then	I	will	clear	the	screen	and	display	a	victory	message.	

This	is	my	final	checkHit()	method.	I	have	called	this	before	I	update	my	missile	bank	(in	the	
ActionListemer).		It	is	also	only	worth	calling	both	this	and	updateMissiles()	if	there	are	missiles	
currently	being	fired	(i.e.	if	missileBank.size()>0).	

				void	checkHit(){	
								for	(int	i	=	0;	i<missileBank.size();	i++){	
												Missile	m		=	(Missile)missileBank.get(i);	
												if	(m.getImageView().getBoundsInParent().intersects(	
																												baddie.getImageView().getBoundsInParent())){	
																missileBank.clear();	
																g.getChildren().clear();	
																Image	won	=	new	Image(getClass().getResourceAsStream("victory.png"));																									
																g.getChildren().add(new	ImageView(won));	
												}	
								}	

Intersection	



CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	
}	

	

	
The	condition	for	this	if‐statement	gets	the	Rectangle	that	represents	the	space	taken	up	by	the	current	
missile	sprite	and	checks	to	see	if	this	intersects	with	the	Rectangle	that	represents	the	space	taken	up	by	
the	baddie.	

	

This	clears	the	ArrayList	of	missiles	and	the	root	group	so	the	stage	is	clear	and	is	followed	by	the	
creation	and	addition	of	a	victory	background.	

If	you	run	your	game,	you	should	be	able	to	‘win’	the	game	by	hitting	the	baddie	with	a	missile.	

There	are	a	number	of	improvements	that	can	be	made	to	this	game.	Some	of	them	start	off	with	hiding	
members	of	each	class	that	are	not	needed	to	be	visible	by	using	the	keyword	private	(for	example	
private	int	x	when	declaring	the	global	variables).	For	further	improvements	and	extensions	see	the	final	
file	in	this	tutorial	series.	


