
CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	

From	yatishparmar.com	 	 1	

PART	ONE	–	CREATING	THE	BOARD	AND	MAIN	SPRITES	

SETTING	UP	THE	WINDOW	
Create	a	new	basic	JavaFX	application.	Use	a	Group	for	the	main	layout.	When	setting	the	scene,	ensure	
the	basic	window	is	800	by	600.		

	

Download	and	extract	the	files	called	Sprites	and	Graphics.	Copy	the	files	into	the	src	directory	for	your	
application.	

Create	an	Image	that	uses	the	background.	Create	an	ImageView	that	uses	this	image	and	add	it	to	the	
group.	

	

Your	application	should	look	like	this	when	run:	

	

	

CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	

From	yatishparmar.com	 	 2	

ADDING	A	PLAYER	SPRITE	
Right	click	the	package	for	the	source	files	and	
add	a	new	Java	class.	Name	this	class	Rocket.	

Create	the	following	global	variables	in	your	
Rocket:	

 Integer:	x	
 Integer:	y	
 Integer:	dx	
 Integer	dy	
 ImageView:	ivRocket	
	
A	constructor	method	is	one	that	is	run	whenever	an	object	is	instantiated	from	a	class.	It	has	the	same	

name	as	the	class.	In	the	constructor	for	your	rocket,	initialise:	
 x	and	y	so	that	the	rocket	will	appear	at	the	bottom	of	the	screen	somewhere	near	the	moon	
 dx	and	dy	to	10	
 The	ImageView	ivRocket	to	the	image	of	the	rocket	(ship.png)	
 Set	the	x	and	y	edges	of	the	ImageView	using	setLayoutX	and	setLayoutY.	
	
Next,	we	need	a	publicly	accessible	getImage	method	that	returns	the	ImageView	of	the	rocket	to	the	

calling	member.	Create	a	public	method	called	getImage()	that	returns	ivRocket.	
	
This	is	the	complete	Rocket	class	so	far:	
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;

public class Rocket {
 int x, y, dx, dy;
 ImageView ivRocket;

 Rocket(){
 x=400;
 y=400;
 dx=10;
 dy=10;
 Image imgRocket = new
Image(getClass().getResourceAsStream("rocket.png"));
 ivRocket = new ImageView(imgRocket);
 ivRocket.setLayoutX(x);
 ivRocket.setLayoutY(y);
 }

 public ImageView getImageView(){
 return ivRocket;
 }
}

CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	

From	yatishparmar.com	 	 3	

Now	we	need	to	display	the	rocket	in	the	scene.	Back	in	the	main	class	for	your	project,		define	the	rocket	
as	a	global	object.			

	

	
	
Next,	create	an	instance	of	the	rocket	in	your	start	method.	Finally,	use	the	getImage()	method	of	the	

rocket	to	add	the	ImageView	to	the	group.	
	

	
	

Repeat	these	steps	for	the	baddie.	If	you	run	your	application,	it	should	look	something	like	this:	

Declaring	a	
global	Rocket.	

CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	

From	yatishparmar.com	 	 4	

This	is	my	final	main	class	without	the	baddie	added	in:	
	
package retroarcadegame;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.stage.Stage;

/**
 *
 * @author Yatish
 */
public class RetroArcadeGame extends Application{
Rocket rocket;

 @Override
 public void start(Stage primaryStage){
 Group g = new Group();
 Scene scene = new Scene(g, 800,600);

 rocket = new Rocket();

 Image imgBack = new
Image(getClass().getResourceAsStream("background.png"));
 ImageView ivBack = new ImageView(imgBack);

 g.getChildren().add(ivBack);
 g.getChildren().add(rocket.getImageView());

 primaryStage.setTitle("Flyer");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }

}

	
	

	 	

CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	

From	yatishparmar.com	 	 5	

ADDING	ACTION	LISTENERS	TO	THE	ROCKET	SPRITE		
Add	an	action	listener	to	the	scene	(in	your	main	class)	which	listens	for	key	events.	This	should	
implement	an	anonymous	inner	class	with	a	handle	method	that	overrides	the	interface.	

	

Use	selection	to	determine	whether	an	action	should	be	carried	out	in	response	to	an	event.	I	have	used	a	
switch.	An	if‐statement	would	suffice.	

	

This	is	my	complete	code	for	the	action	listener:	

 scene.setOnKeyPressed(new EventHandler<KeyEvent>() {
 @Override
 public void handle(KeyEvent t) {

 switch (t.getCode()) {
 case LEFT:
 rocket.moveLeft();
 t.consume();
 break;

 case RIGHT:
 rocket.moveRight();
 t.consume();
 break;
 case SPACE:
 //not implemented yet
 default:
 //do nothing
 }
 }
 });

Complete	the	
surrounds	for	the	
event	listener	

CREATING	AN	ARCADE	GAME	USING	JAVAFX	

	

From	yatishparmar.com	 	 6	

PROGRAMMING	THE	ROCKET	TO	RESPOND	
Return	to	your	Rocket	class.	Create	methods	in	the	rocket	for	moveLeft	and	moveRight	as	called	for	by	
the	action	listener.	

dx	is	going	to	be	the	variable	that	controls	the	speed	of	the	rocket.	The	large	dx,	the	large	the	number	of	
pixels	it	will	move	each	time	the	move	method	is	called.	

Subtract	dx	from	x	and	assign	the	result	to	x.	

	

We	want	the	rocket	to	move		left	if	it	has	not	yet	reached	the	edge	of	the	screen.	You	can	move	the	rocket	
by	using	the	setLayoutX	method	of	the	ImageView	that	you	used	to	position	it	initially.	

	

The	moveRight	method	works	in	a	similar	manner	to	this,	but	must	test	for	the	right	edge	of	the	screen.	

When	you	run	your	game,	you	should	be	able	to	control	the	rocket	sprite	using	the	arrow	keys	on	the	
keyboard.	

	

